Diagnosis and Short-Term Follow-up of Cases found by TREC Newborn Screening

Jennifer Puck, MD

Jennifer.Puck@ucsf.edu

Department of Pediatrics University of California San Francisco and Benioff Children's Hospital San Francisco, California

Severe Combined Immunodeficiency, SCID

- Absent T cells; no specific antibody production by B cells.
- Recurrent infections and weight loss from age 2-4 months.
- Serious bacterial, viral, & fungal infections; opportunistic pathogens that do not cause disease in healthy infants.
- Early death unless a working immune system can be established (by allogeneic transplant of hematopoietic stem cells, HSC, or in some cases enzyme replacement or gene therapy).
- Improved outcome with diagnosis at birth (≥92%) or prior to infectious complications (≤75%).

Primary Target: SCID; Many Genes, Distinct T, B, NK profiles

	INIX-	
T- T- T-	B+ B+ B+	NK+ NK+ NK+
T- T- T- T-	B- B- B- B-	NK+ NK+ NK+ NK+
T-	B-	NK-
T- B+/- T- B+	B+/- NK+ B+/- NK+	NK+ NK+
	T- T- T- T- T- T- T- T- T- B+/- T- B+/- B+ B+/-	T- $B+$ T- $B+$ T- $B+$ T- $B-$ T- $B-$ T- $B-$ T- $B-$ T- $B-$ T- $B-$ T- $B+/-$ B+/- $NK+$ T- $B+/ B+$ $NK+$ $B+/ NK+$ $B+/ NK+$

TRECs: Biomarker for Thymic T Cell Production

Thymus produces T cells with a diverse repertoire

- Antigen specificity arises by DNA recombination of T cell receptor genes.
- •Excised DNA segments form <u>T Cell Receptor Excision Circles</u> (TRECs) as a byproduct.
- •TRECs are stable and are detected by PCR.
- •Newborns have the most TRECs; TRECs are diluted as T cells undergo many divisions in the periphery.

Classification of infants with low T cells

Category	Definition of Condition ^a
Typical SCID	<300 autologous T cells/µL, <10% of normal proliferation to PHA, ^b frequently with maternal T cell engraftment and defect(s) in a known SCID gene
Leaky SCID	300-1,499 autologous T cells/µL, reduced proliferation to PHA, no maternal engraftment, generally with incomplete defect(s) in a known SCID gene
Omenn syndrome	Similar to leaky SCID, but also with oligoclonal T cells, erythroderma, hepatosplenomegaly, eosinophilia, and elevated serum IgE
Syndrome with low T cells	Recognized genetic syndrome that includes low T cells within its spectrum of clinical findings
Secondary low T cells	Congenital malformation or disease process without intrinsic immunodeficiency that results in low circulating T cells
Preterm birth alone	Preterm infants with low T cells early in life that become normal over time
Idiopathic T cell Iymphopenia	Persistently low T cells (300-1,499 /µL), functional T and/or B cell impairment, no defect in a typical SCID gene; etiology and clinical course undetermined ^c

^aDefinitions of R4S and Primary Immunodeficiency Treatment Consortium (PIDTC). ^bPHA, phytohemagglutinin.

^cWhen/if etiology for low T cells discovered, the individual is moved to the appropriate category.

Severe Combined Immunodeficiency, SCID

- Absent T cells; no specific antibody production by B cells.
- Recurrent infections and weight loss from age 2-4 months.
- Serious bacterial, viral, & fungal infections; opportunistic pathogens that do not cause disease in healthy infants.
- Early death unless a working immune system can be established.

SCID with Newborn Screening

- Absent T cells; no specific antibody production by B cells.
- Recurrent infections and weight loss from age 2-4 months.
- Serious bacterial, viral, & fungal infections; opportunistic pathogens that do not cause disease in healthy infants.
- Early death unless a working immune system can be established.
- Incidence 1/55,000 births in CA, similar in 11 programs (Kwan et al, JAMA 2014).
- Typical SCID: <300/uL autologous T cells, <10% of normal PHA proliferation; no specific antibodies.
- Leaky SCID: 300-1500 T cells, functional impairment, no maternal engraftment.

4 Years of California SCID Newborn Screening (8/2010-8/2014)

Genotypes of Typical and Leaky SCID

Reports from Transplant Centers, no Screening

Duke University, European centers (estimates)

California, with **TREC Screening**

4 years, ~2 million infants

Overall Survival 95%

California Treatment/Outcome for SCID/Leaky/OS

- <u>Treatment</u> 24 HCT 3 PEG-ADA
- 4 gene therapy (ADA, IL2RG)
- 1 left USA
- 2 awaiting treatment

- <u>Survival</u> 94% 1 died of CMV 1 died of busulfan
 - toxicity

Non-SCID Conditions Detected (Secondary Targets of TREC Screening)

Multisystem syndromes with variable T cell deficiency

- 57% DiGeorge/chromosome 22q11.2 deletion
- 15% Trisomy 21
 - 3% Ataxia telangiectasia
 - 2% CHARGE syndrome
 - Many others...
 - Trisomy 18, Jacobsen, CLOVES, Fryns, Nijmegen breakage syndrome

Non-SCID Conditions Detected (Secondary Targets of TREC Screening)

Multisystem syndromes with variable T cell deficiency

- 57% DiGeorge/chromosome 22q11.2 deletion
- 15% Trisomy 21
 - 3% Ataxia telangiectasia
 - 2% CHARGE syndrome

Secondary T lymphopenia

25% Congenital cardiac anomalies
38% Other (multiple) congenital anomalies
13% Vascular leakage, third spacing, hydrops
3% Neonatal leukemia

Extreme preterm birth—T cells become normal over time

Preterm Low Birthweight Infants with Low TRECs and T Lymphopenia

Non-SCID Conditions Detected (Secondary Targets of TREC Screening)

Multisystem syndromes with variable T cell deficiency

- 57% DiGeorge/chromosome 22q11.2 deletion
- 15% Trisomy 21
 - 3% Ataxia telangiectasia
 - 2% CHARGE syndrome

Secondary T lymphopenia

- 25% Congenital cardiac anomalies 38% Other congenital anomalies
 - 13% Vascular leakage, third spacing, hydrops
 - 3% Neonatal leukemia

Extreme preterm birth—T cells become normal over time

"Variant SCID" or Idiopathic T lymphopenia—few naïve T cells, no maternal engraftment, impaired T cell or antibody responses, no known gene defect

Variant SCID or Idiopathic T Lymphopenia

- Persistent low but not absent T cells and TRECs, low naïve CD45RA T cells, no maternal engraftment.
- No known SCID gene mutation.
- Impaired T cell and/or antibody responses.
- When an etiology is found, case is moved to the appropriate category.

Conclusions

- SCID, the primary target of TREC NBS, is a treatable serious, genetic immune deficiency affecting around 1/50,000 births.
- 2. NBS permits optimal treatment and best outcomes.
- 3. Non-SCID secondary targets of NBS may benefit from early identification
- 4. Tracking incidence, pursuing gene diagnosis and learning outcomes of TREC screen positive cases will be informative for public health programs and immunologists.

Thanks to Many Collaborators

<u>UCSF</u>

Antonia Kwan, Mort Cowan, Christopher Dvorak

California Dept. of Pub Health

Bob Currier and colleagues Perkin Elmer, Quest Nichols Lab

UC Berkeley and TCS Genomics

Steven Brenner, Raj Srinivasan, Uma Sunderam and others

LA Children' s Hospital, Stanford, UCLA

Joe Church, Neena Kapoor, Matt Porteus, Sean McGhee, Don Kohn, E. R. Stiehm

Support NIH NCRR UCSF CTSI NIAID RO1s, USIDNet and RO3 **Primary Immune Deficiency Treatment** Consortium Immune Deficiency **Foundation** Jeffrey Modell Foundation Center for Disease Control and Prevention DHHS Maternal and Child Health Bureau, NBSTRN