Clinical Considerations: Newborn Screening for ALD

Paul Orchard, MD University of Minnesota

National New Disorders Meeting June 22, 2017

Discussion

- Phenotypes associated with ALD
- Diagnosis; implications for the family
- Monitoring of patients post diagnosis
- Current treatment; transplant outcomes
- Importance of newborn screening

Adrenoleukodystrophy

- Frequency **≈1:20,000** boys
- X-linked peroxisomal
- Defect in ABCD1 gene; many described mutations
- Defective metabolism of very long chain fatty acids (VLCFA)
- High plasma VLCFA; establishes the diagnosis

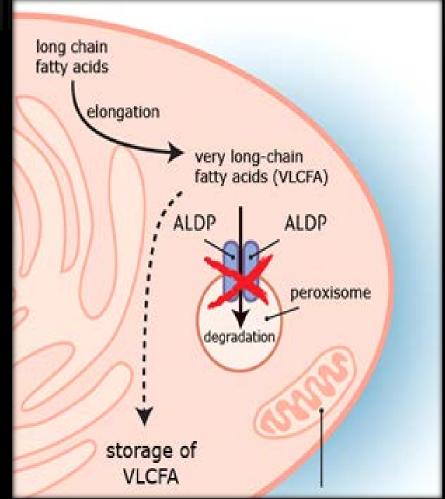
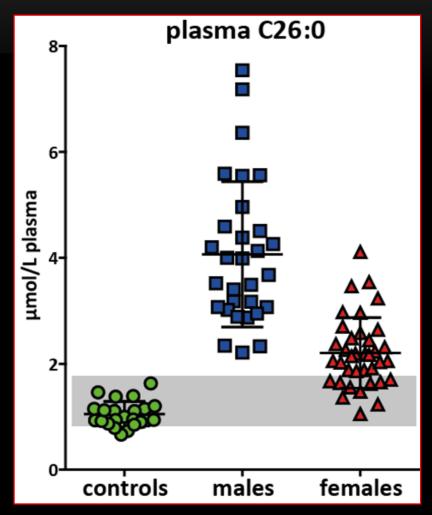



Figure: Dr. Kemp, Emma Children's Hospital, Amsterdam, Netherlands

Diagnosis of ALD

- Very Long Chain Fatty Acid (VLCFA) accumulation in ALD esp. C24 and C26
- Defective gene (ABCD1) mapped to Xq2; >750 mutations described
- Other peroxisomal disorders can also have increased VLCFA

http://www.x-ald.nl/biochemistry-genetics/vlcfa/

Phenotypes: ALD

 Childhood Cerebral ALD (C-ALD) 2.75-10 years; median age 7.2 years 	30 - 35%
 Adolescent Cerebral ALD; 11-21 years 	4 - 7%
 Adrenomyeloneuropathy (AMN) Spinal cord disease (40% develop C-ALD) 	40 - 46%
Adult C-ALD alone	2 - 5%
Addisonian Disease alone	50%

Asymptomatic: Decreases with age

Rare <40

Adrenomyeloneuropathy (AMN)

- Most frequent phenotype of ALD
- Symptom onset usually 20 30 yrs
- Slowly progressive motor disability.
 Stiffness, weakness in legs initially
- Leads to use of cane, then wheelchair
- Defects in spinal cord; non-inflammatory
- Also occurs to a lesser degree in women carriers

Kemp, Biochimica et Biophysica, 2012; (1822):1465-74

Adrenal Insufficiency (AI) in ALD

- VLCFA accumulate in adrenal glands
- IN ALD, production of cortisol and aldosterone can be impaired
- Chronic symptoms may include
 Fatigue, weakness, weight loss, nausea
- Stress (infection, trauma) can cause
 - Severe N/V, dehydration, hypotension, hypoglycemia, low Na, high K
 - Deaths occur with common viral infections

Adrenal Insufficiency (AI)

Studies of AI in ALD:

•49 asymptomatic pts (mean 4.5 yrs)
\$ 39 (80%) showed adrenal dysfunction*
•90 pts with cerebral ALD (mean 6.3 yrs)
\$ 79 (88%) showed adrenal dysfunction**
\$ 17 (22%) of these – AI first sign of ALD
•Transplantation does not reverse AI***

*Kemp, Biochimica et Biophysica, 2012; (1822):1465-74 **Polgreen, Eur J Pediatr, 2011 (170): 1049-1054 ***Petryk, Bone Marrow Transpl, 2012 (47): 1377-8

Cerebral ALD: MRI Findings

Occipital Disease

Gadolinium Enhancement

Cerebral ALD (CALD)

- Most lethal form of ALD
- Acute, neuroinflammatory process leading to demyelination in 35-40% of boys
- Peak age of onset of clinical disease is 7 years of age; MRI changes ~2 yrs earlier
- Occurs with other phenotypes
- Not clear what initiates disease
- Progressive and lethal; bone marrow transplantation is the only approved Rx

History Of Transplantation For Cerebral ALD

- Rationale based on transplant successes with LSD
- ALD known to be a peroxisomal disease, but thought to be an enzyme deficiency
- 1984; Moser first report of HSCT for ALD; advanced patient; progressed, died
- 1990; Aubourg reported disease stabilization in a patient with early cerebral ALD
- 1993; Aubourg cloned the gene, showing it is a transmembrane, non-secreted protein
- Allogeneic HCT now standard of care for early cALD (but why how does it work??)

What are the outcomes of transplantation for CALD?

- 1. Survival
- 2. Neurologic Outcomes
- 3. Neuropsychological Findings

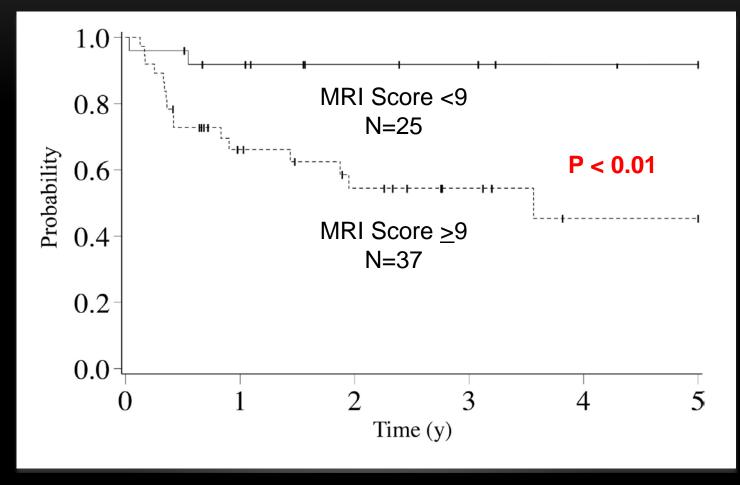
Phenotypes: ALD

- Childhood Cerebral ALD (C-ALD) 30 - 35% 2.75-10 years; median age 7.2 years Adolescent Cerebral ALD; 11-21 years 4 - 7% Adrenomyeloneuropathy (AMN) 40 - 46% Spinal cord disease (40% develop C-ALD) Adult C-ALD alone 2 - 5% Addisonian Disease alone 50%
- Asymptomatic: Decreases with age Rare <40

Grading Radiographic Severity

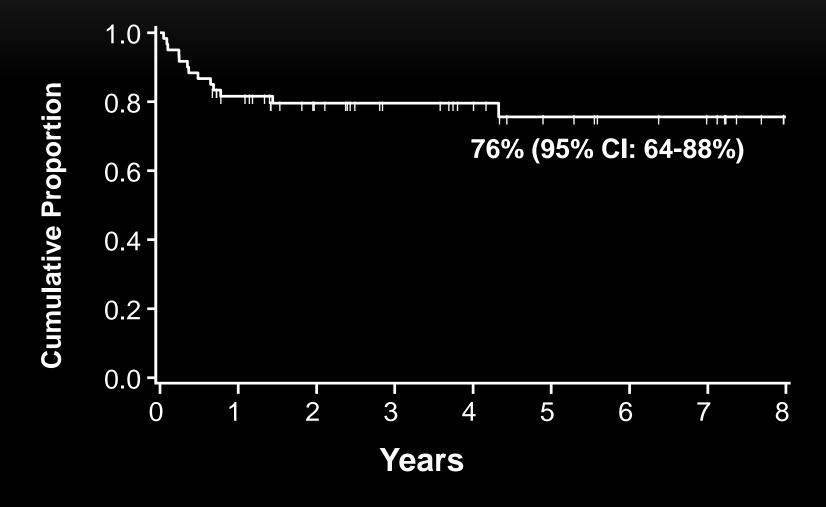
Loes scoring: (0–34) Point system

- parieto-occipital WM
- antero-temporal WM
- frontal WM
- corpus callosum
- visual pathways
- auditory pathways
- pyramidal system
- basal ganglia
- anterior thalamus

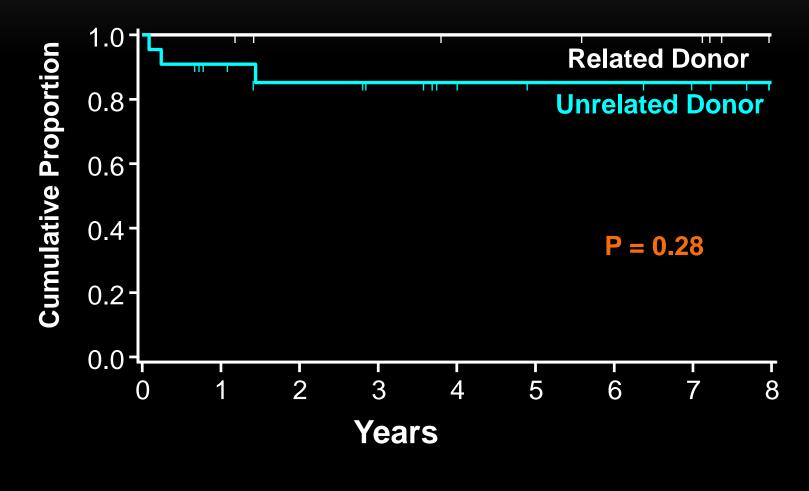

Loes et al. AJNR Am J Neuroradiol 1994;15:1761-1766

Cerebral ALD: HCT Experience

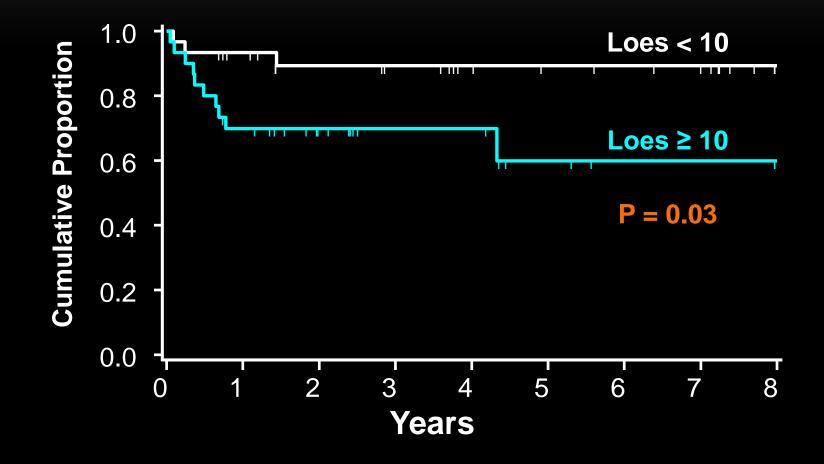
- 2004; International experience (43 centers)
- 94 patients transplanted through 1999
- numerous preparative regimens used
- Overall survival 56% over entire group
- Leading cause of death: disease progression
- Amount of disease at the time of BMT crucial


Peters et al. Blood 2004; 104:881-888

Survival Based On MRI Score


MRI score prior to transplant predicts survival Peters et al. Blood 2004; 104:881-888

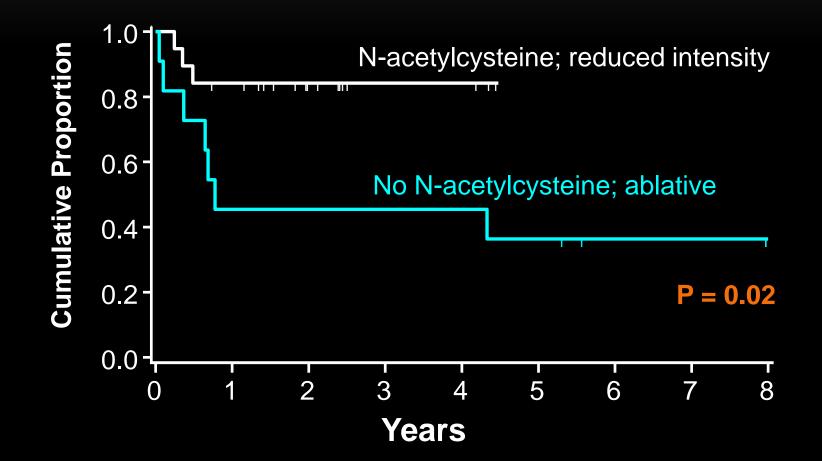
Minnesota Study: Overall Survival: All Transplanted ALD Patients (n=60)


Miller, Blood, 2011; 18(7):1971-8

Survival by Graft Source; Early cALD (Loes Score <10; N=30)

Miller, Blood, 2011; 18(7):1971-8

Survival by pre-Transplant Loes Score (Early vs. Late Disease)


Miller, W. et al. Blood, 2011; 18(7):1971-8

Could Modification of the Transplantation Approach Improve Outcomes in CALD?

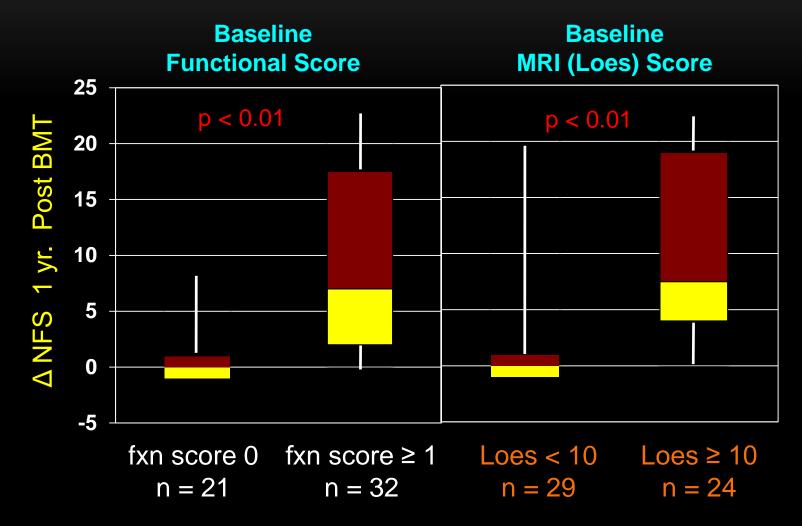
 Powers; 2005 – autopsy study Oxidative stress in brains of patients with ALD
 Pujol; 2008 – murine data Confirmed oxidative stress in *ABCD1*⁻ mice

Powers et al. J Neuropathol Exp Neurol. 2008 64(12):1067-1079 Fourcade et al. Human Molecular Genetics. 2008 17(12):1762-1773

Advanced ALD; Modified Protocol (Loes Score >10; N=30)

Miller, Blood, 2011; 18(7):1971-8

Survival can be improved with transplant modification in advanced cALD

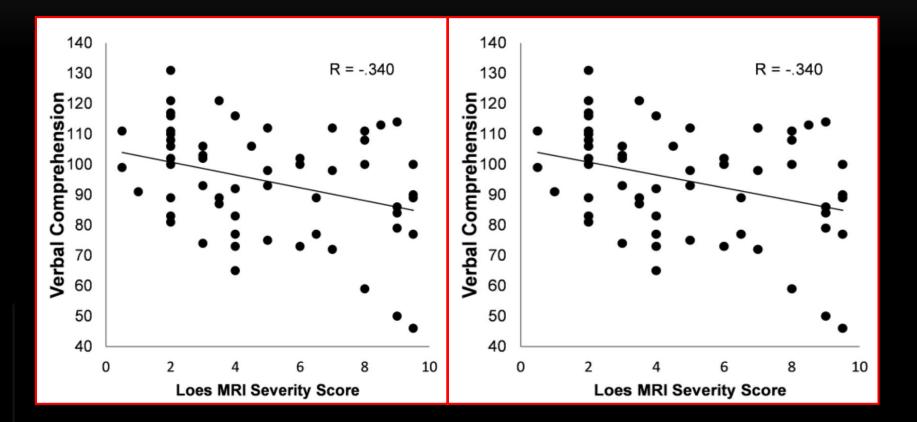

What about neurologic outcomes?

Assessing Functional Outcome: Moser/Raymond NFS Scale

Hearing/auditory processing problems	1
Aphasia/apraxia	1
Loss of communication	3
Vision impairment/fields cut	1
Cortical blindness	2
Swallowing difficulty or other CNS dysfunction	2
Tube feeding	2
Running difficulties/hyperreflexia	1
Walking difficulties/spasticity/spastic gait (no assistance)	1
Spastic gait (needs assistance)	2
Wheelchair required	2
No voluntary movement	3
Episodes of incontinency	1
Total incontinency	2
Nonfebrile seizures	1
Possible Total:	25

from Moser, Arch Neurol 2005;62:1073-1080

Change In Neurologic Function Score (NFS) Based on Baseline Score, Loes Score

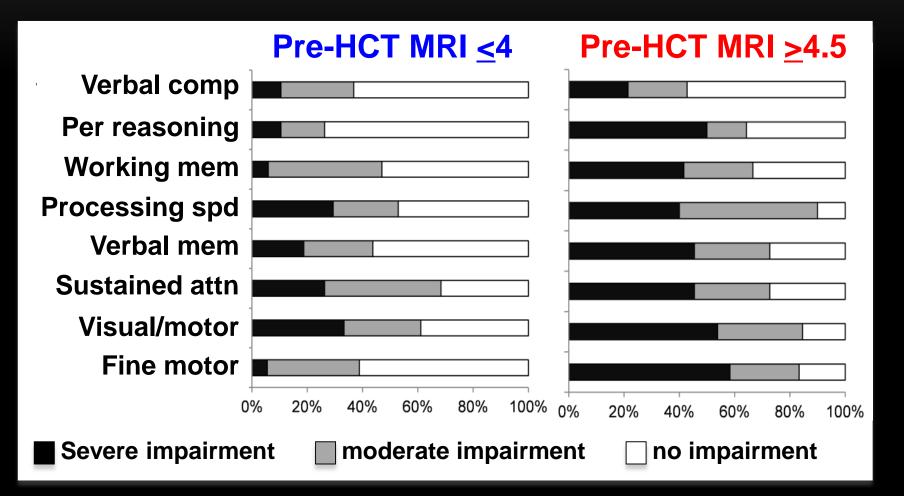


Miller, Blood, 2011; 18(7):1971-8

Neurocognitive Assessments Standard Risk cALD Patients

- 1. 139 cALD patients transplanted at Minnesota between 1991-2014
- 2. 62 patients had pre-BMT MRI scores <10 and pre-HCT neurocognitive testing (baseline group)
- 3. 33 had neurocognitive data obtained at least 2 years post HCT (long-term group)
- 4. Median age of all patients was 8 years
- Testing included verbal reasoning, visual/perceptual reasoning, verbal reasoning, working memory and processing speed

Neurocognitive Functioning Pre-HCT Correlation: Increased MRI Severity



Effect Of Severity of Baseline MRI On Neurocognitive Functioning pre-HCT

Testing	<u>p value</u>
Verbal comprehension	0.008
Perceptual reasoning	0.001
Working memory	NS
Processing speed	0.03

Conclusion: Despite being identified as being in a "standard risk" ALD group, significant deficits are observed, related to MRI based severity

Impairments at Most Recent Evaluation: Boys With Standard Risk cALD

Predicted Outcome; Effect of Pre-HCT MRI On Neurocognitive Functioning post-HCT

<u>MRI</u> <u>Score</u>	<u>HCT</u>	<u>Verbal</u> <u>Comp</u>	<u>Percept</u> <u>Reason</u>	<u>Working</u> <u>Memory</u>	Process Speed
2	pre	99	102	94	95
2	5 yr	93	102	93	86
7	pre	90	88	86	85
7	5 yr	65	63	79	46

Outcomes based on linear mixed model Hypothetical 8 year old with cALD undergoing HCT

Predicted Outcome; Effect of Pre-HCT MRI On Neurocognitive Functioning post-HCT

<u>MRI</u> <u>Score</u>	<u>HCT</u>	<u>Verbal</u> <u>Comp</u>	<u>Percept</u> <u>Reason</u>	<u>Working</u> <u>Memory</u>	Process Speed
2	pre	99	102	94	95
2	5 yr	93	102	93	86
7	pre	90	88	86	85
7	5 yr	65	63	79	46

Outcomes based on linear mixed model Hypothetical 8 year old with cALD undergoing HCT

Summary: Neurocognitive Testing in "Standard-Risk" cALD and HCT

- At baseline, as MRI scores increase, prior to HCT there is more impairment of verbal & visual reasoning and processing speed
- 2. Post transplant, patients with more advanced disease have a steeper decline in functioning
- 3. <u>Two-thirds of all patients had severe impairment in \geq 1 neurocognitive domain at the time of last testing</u>

Implication: Even boys with "standard-risk" disease are at risk for long term deficits. Earliest diagnosis of cALD possible provides the best opportunity for good outcomes

Summary: NBS for ALD

- **1. Newborn screening will save lives!**
- 2. Deaths due to adrenal insufficiency will be decreased
- 3. Deaths and life-long disability will be decreased because of earlier transplantation.
- 4. With NBS, other boys at risk (brothers, cousins) will be identified as well.
- For NBS to be effective, ongoing monitoring will be required to establish when intervention (hydrocortisone, BMT) will be necessary
- Can we identify CALD before demyelination occurs? May allow us to better preserve function

Univ. of Minnesota

Brad Carlin Jim Cloyd Todd Defor **Reena Kartha** Maggie Kumbalek **Troy Lund Brad Miller** Weston Miller Gerald Raymond Nicole Sando Jakub Tolar John Wagner **Chet Whitley**

Imaging: Alex Mckinney Shalom Michaeli Dave Nascene Igor Nestrasil

Neuropsych:

Julie Eisengart Rene Pierpont Peg Semrud-Klikeman